第二节 肝的生物转化功能(当前章节内容组合)

一、生物转化的反应类型

通常将生物转化反应分为两相反应。第一相反应包括氧化、还原、水解反应,第二相反应即结合反应。每一相反应又各自包括多种不同的反应,分别在不同的部位中进行(表10-1)。

表10-1 生物转化反应的一般类型

反应类型 反应性质 细胞内酶的主要定位
羟化反应 微粒体
脱烷基反应 微粒体
环氧化反应 微粒体
氧化 脱硫反应 微粒体
脱卤反应 微粒体
醇氧化反应 胞液为主、微粒体少量
醛氧化反应 胞液、线粒体
脱氨反应 微粒体、线粒体
还原 醛还原反应 胞液
偶氮还原反应 微粒体
硝基还原反应 微粒体、胞液
水解 酯水解反应 微粒体、胞液
酰胺水解反应 微粒体、胞液
葡萄糖醛酸结合 微粒体
甘氨酸结合 线粒体
结合 乙酰化反应 胞液
甲基化反应 胞液
谷胱甘肽结合 胞液
硫酸结合 胞液

(一)第一相反应

大多数毒物、药物等进入肝细胞后,常先进行氧化反应,有些可被水解,少数物质被还原。经过氧化、还原和水解作用,一般能使非极性的化合物产生带氧的极性基团,从而使其水溶性增加以便于排泄,同时也改变了药物或毒物分子原有的某些功能基团,或产生新的功能基团使毒物解毒或活化,使某些药物的药理活化发生变化,使某些致癌物质活化或灭活。

⒈氧化作用在肝细胞的微粒体、线粒体及胞液中含有参与生物转化的不同的氧化酶系,包括加单氧酶系、胺氧化酶系脱氧酶系(表10-2)。

表10-2 与生物转化有关的几种氧化酶类

酶系 细胞内定位 反应式及举例
加单氧酶系 微粒体 RH+O2+NADPH+H+→ROH+NADP+
(混合功能氧化酶) (滑面内质网) +H2O(如烃类的氧化等)
胺氧化酶系 线粒体 RCH2NH2+O2+H2O→RCHO+NH3+H2O2
(如单胺氧化酶催化组胺、酪胺等的氧化)
脱氢酶系 胞液 RCH2OH+NAD+→RCHO+NADH+H+
线粒体 RCHO→RCOOH
(如醇脱氢酶及醛脱氢酶催化的反应)

存在于微粒体中的以细胞色素P450为重要成分的加单氧酶系具有十分重要的生理意义。在该系统所催化的反应中,由于氧分子中的一个氧原子掺入到底物中,而另一个氧原子使NADPH氧化生成水,即一种氧分子发挥了两种功能,故又称混合功能氧化酶,从底物的角度来看,只掺入一个原子的氧,故称加单氧酶。

应当指出:依赖细胞色素P450的电子传递系统存在于各种生物膜系统中。在高等动物组织中有微粒体型及线粒体内膜型两大类。微粒体型又包括单一电子传递系统和复合电子传递系统,后者中既有NADPH参与,又有NADP参与。线粒体内膜型则有铁氧还原蛋白、NADPH及细胞色素P450参加。多样的细胞色素P450系统催化外来异物的羟化和脱烷基反应,还参与类固醇激素的生物合成、灭活胆汁酸的生物合成及维生素D3的羟化反应等。许多毒物、药物或致癌物经过混合功能氧化酶的催化而产生各种羟化反应产物。现将微粒体混合功能氧化酶催化的氧化反应类型列于表10-3。

表10-3 微粒体混合功能氧化酶催化的氧化反应类型

⒉还原作用肝细胞中生物转化的还原反应主要有偶氮还原酶和硝基还原酶所催化的两类反应。硝基还原酶存在于肝、肾、肺等细胞微粒体中,是FAD型还原酶,可使对-硝基苯甲酸、硝基苯、氯霉素等的-NO2还原成-NH2,反应在厌氧条件下进行,由NADH供氢。偶氮还原酶存在于肝细胞微粒体中,由NADPH供氢,中间经氢偶氮复合物最后生成胺,反应可在有氧条件下进行,此酶属P450酶类。

⒊水解作用如某些酯类(普鲁卡因)、酰胺类(异丙异菸肼)及糖苷类化合物(洋地黄毒苷)可分别在酯酶、酰胺酶、糖苷酶等水解酶的作用下被水解。这类酶在体内分布广泛,种类繁多,肝外组织也含有这些酶类。

(二)第二相反应

有机毒物或药物,特别是具有极性基团的物质,不论是否经过氧化、还原及水解反应,大多要与体内其他化合物或基团相结合,从而遮盖了药物或毒物分子中的某些功能基团,使它们的生物活性、分子大小以及溶解度等发生改变,这就是生物转化中的结合反应。结合反应往往属于耗能反应,它在保护有机体不受外来异物毒害、维持内环境稳定方面具有重要意义。结合反应可在肝细胞的微粒体、胞液和线粒体内进行。不同形式的结合反应由肝内特异的酶系所催化。常见的结合反应有葡萄糖醛酸结合、硫酸结合、乙酰基结合、甘氨酰基结合、甲基结合、谷胱甘肽结合及水化等。但其中以葡萄糖醛酸结合最为重要。(表10-4)。

表10-4 结合反应的主要类型

结合反应 结合基团的直接供体 酶类 酶定位 底物类型
葡萄糖醛酸结合 尿苷二磷酸葡萄糖醛酸(UDPGA) 葡萄糖醛酸基转移酶 微粒体 酚、醇、羧酸、胺、羟胺、磺胺、巯基化合物等
硫酸结合 3′-磷酸腺苷-5′-磷酸硫酸(PAPS) 硫酸转移酶 胞液 醇、酚、芳香胺类
乙酰基结合 乙酰辅酶A 乙酰基转移酶 胞液 芳香胺、胺类、氯基酸
甘氨酰基结合 甘氨酸(Gly) 酰基转移酶 线粒体 酰基CoA(如苯甲酰CoA)
甲基结合 S-腺苷蛋氨酸(SAM) 甲基转移酶 胞液 生物胺、吡啶喹啉、异吡唑等
谷胱甘肽结合 谷胱甘肽(GSH) 谷胱甘肽-S-转移酶 胞液 卤化有机物、环氧化物、溴酚酜、胰岛素等
水化 H2O 环氧水化酶 微粒体 不稳定的环氧化物(如环氧萘)

二、致癌物质的生物转化

(一)致癌物的分类及致癌作用

癌常由各种化学物质所致,已确定至少有约1700种化学物质具有致癌作用,这些致癌物大体有下述几类:

⒈人工合成的化学致癌物

⑴芳香烃类:如苯并芘。

⑵芳香胺类:如2-乙酰氨基芴。

⑶芳香族偶氮化合物:如4-二甲基氨基偶氮苯(奶油黄,DAB)。

⑷杂环化合物:如1-氧-4-硝基喹啉(4-NQO)。

⑸脂肪族化合物:如芥子气。

⑹有机卤化物及无机化合物:如666及羰基镍、砷化物等。

⑺N-亚硝基化合物:如二乙基亚硝胺等。

⒉由微生物产生的化学致癌物一些真菌毒素具有致癌作用,已确定结构的17种黄曲霉毒素中致癌作用最强的是黄曲霉毒素B1

⒊来自植物的致癌物如苏铁苷、香樟素等。

⒋食物加热过程中产生的致癌物质如谷氨酸加热环缩而成为Glu-p-2。

⒌由肠菌作用所产生的致癌物质例如在肠菌作用下由胆汁酸生成甲基胆蒽,由色氨酸生成酚类,肠菌作用产生的胺类与亚硝酸盐生成亚硝胺类等。

上述致癌物进入人体后常需经过转化而转变为活化型的致癌物,再以DNA和蛋白质为靶分子,使基因产生突变、错位、倒转、插入、重排、断裂等一系列结构损伤。基因是决定细胞增殖,生长,分化的关键因素,其突变无论是致癌剂引起的体细胞基因突变或(和)遗传因素导致生殖细胞突变,或正常基因丢失以及正常细胞分化过程中基因调控异常,均可使基因表达发生紊乱,出现异常表型,影响细胞形态和生物活性,导致细胞癌变。

表10-5 某些致癌物质的生物转化

某些致癌物质的生物转化

致癌物的代谢活化及灭活反应是转化的两个方面,许多致癌物质是经过肝细胞内微粒体混合功能氧化酶的作用,被代谢活化而变为终致癌物的。致癌物质亦可经生物转化而灭活或被排泄,因此,生物转化具有两重性(表10-5)。

三、药物的生物转化

大多数药物经不同途径被摄入人体后都要发生分子结构的改变,药物的生物转化主要是在肝细胞滑面内质网的混合功能氧化酶系的催化下完成的,反应也包括氧化、还原、水解、结合等反应,通过生物转化,常引起药物药理活性的变化(表10-6)。

表10-6 药物经生物转化引起药理活性的变化

药物经生物转化引起药理活性的变化

四、毒物的生物转化

毒物在生物转化过程中往往形成活性中间产物,这叫代谢活化,常为第一相反应,与加单氧酶系有关;第二相反应则常与毒物的解毒及促进排泄有关。毒物的生物转化举例如表10-7。

五、有关生物转化与排泄功能的肝功能试验

(一)溴酚(磺溴酞钠,BSP)排泄试验

以溴酚1ml缓慢静注(1min),45min后95%以上可以排出,滞留2%以下。当注入BSP后,与血液中的白蛋白相结合,被肝细胞摄取再在酶的催化下,与谷胱甘肽结合,随胆汁排出。当肝细胞摄取、结合及排泄功能障碍时,BSP出现滞留。急、慢性肝炎及肝硬化、肝昏迷时滞留,可用以判断肝损伤程度及预后,本试验应注意过敏反应及休克。

表10-7毒物的生物转化举例

毒物的生物转化举例

*CytP450系即CytP450依赖性混合功能氧化酶系。

(二)靛青绿(ICG)排泄试验

靛青绿为暗绿色色素,静脉注射后迅速与白蛋白结合,90%以上被肝细胞摄取,以原形从胆汁排出,此试验主要反映肝细胞摄取色素的功能。ICG试验与肝小叶间质系统的病变(假小叶、纤维化)有关,慢性肝炎活动期肝硬化时显著滞留,肝炎时亦出现滞留,恢复期此试验较早正常化。正常人15min滞留10%以下。本试验亦应注意过敏反应及休克。